373 research outputs found

    Affiliation, Aggression, and Selectivity of Peer Relationships in Meadow and Prairie Voles

    Get PDF
    Relationships between adult peers are central to the structure of social groups. In some species, selective preferences for specific peers provide a foundation for consistent group composition. These preferences may be shaped by affiliation toward familiar individuals, and/or by aversion to unfamiliar individuals. We compared peer interactions in two vole species that form selective preferences for familiar same-sex individuals but differ in mating system. Prairie voles (Microtus ochrogaster) form pair bonds with mates and may reside in family groups. Meadow voles (Microtus pennsylvanicus) are promiscuous breeders that form communal winter groups in the wild, and exhibit greater social behavior in short day (SD) lengths in the laboratory. We characterized affiliative, anxiety-like, and aggressive interactions with familiar and novel same-sex conspecifics in meadow and prairie voles housed in summer- or winter-like photoperiods. Species differences in affective behaviors were pronounced, with prairie voles exhibiting more aggressive behavior and less anxiety-like behavior relative to meadow voles. Meadow voles housed in short (vs. long) day lengths were more affiliative and more interactive with strangers; prosocial behavior was also facilitated by a history of social housing. Prairie voles exhibited partner preferences regardless of sex or day length, indicating that selective peer preferences are the norm in prairie voles. Prairie vole females formed preferences for new same-sex social partners following re-pairing; males were often aggressive upon re-pairing. These data suggest that preferences for familiar peers in prairie voles are maintained in part by aggression toward unfamiliar individuals, as in mate partnerships. In contrast, social tolerance is an important feature of meadow vole peer affiliation, demonstrated by low aggression toward unfamiliar conspecifics, and consistent with field data on winter tolerance

    Affiliation, Aggression, and Selectivity of Peer Relationships in Meadow and Prairie Voles

    Get PDF
    Relationships between adult peers are central to the structure of social groups. In some species, selective preferences for specific peers provide a foundation for consistent group composition. These preferences may be shaped by affiliation toward familiar individuals, and/or by aversion to unfamiliar individuals. We compared peer interactions in two vole species that form selective preferences for familiar same-sex individuals but differ in mating system. Prairie voles (Microtus ochrogaster) form pair bonds with mates and may reside in family groups. Meadow voles (Microtus pennsylvanicus) are promiscuous breeders that form communal winter groups in the wild, and exhibit greater social behavior in short day (SD) lengths in the laboratory. We characterized affiliative, anxiety-like, and aggressive interactions with familiar and novel same-sex conspecifics in meadow and prairie voles housed in summer- or winter-like photoperiods. Species differences in affective behaviors were pronounced, with prairie voles exhibiting more aggressive behavior and less anxiety-like behavior relative to meadow voles. Meadow voles housed in short (vs. long) day lengths were more affiliative and more interactive with strangers; prosocial behavior was also facilitated by a history of social housing. Prairie voles exhibited partner preferences regardless of sex or day length, indicating that selective peer preferences are the norm in prairie voles. Prairie vole females formed preferences for new same-sex social partners following re-pairing; males were often aggressive upon re-pairing. These data suggest that preferences for familiar peers in prairie voles are maintained in part by aggression toward unfamiliar individuals, as in mate partnerships. In contrast, social tolerance is an important feature of meadow vole peer affiliation, demonstrated by low aggression toward unfamiliar conspecifics, and consistent with field data on winter tolerance

    Emergent Intra-Pair Sex Differences and Organized Behavior in Pair Bonded Prairie Voles (Microtus ochrogaster)

    Get PDF
    In pair bonding animals, coordinated behavior between partners is required for the pair to accomplish shared goals such as raising young. Despite this, experimental designs rarely assess the behavior of both partners within a bonded pair. Thus, we lack an understanding of the interdependent behavioral dynamics between partners that likely facilitate relationship success. To identify intra-pair behavioral correlates of pair bonding, we used socially monogamous prairie voles (Microtus ochrogaster) and tested both partners using social choice and non-choice tests at short- and long-term pairing timepoints. Females developed a preference for their partner more rapidly than males, with preference driven by different behaviors in each sex. Further, as bonds matured, intra-pair behavioral sex differences and organized behavior emerged—females consistently huddled more with their partner than males did regardless of overall intra-pair affiliation levels. When animals were allowed to freely interact with a partner or a novel vole in sequential free interaction tests, pairs spent more time interacting together than either animal did with a novel vole, consistent with partner preference in the more commonly employed choice test. Total pair interaction in freely moving voles was correlated with female, but not male, behavior. Via a social operant paradigm, we found that pair-bonded females, but not males, are more motivated to access and huddle with their partner than a novel vole. Together, our data indicate that as pair bonds mature, sex differences and organized behavior emerge within pairs, and that these intra-pair behavioral changes are likely organized and driven by the female animal

    A systematic review of randomized and case‐controlled trials investigating the effectiveness of school‐based motor skill interventions in 3‐ to 12‐year‐old children

    Get PDF
    Background Research suggests that children identified with impaired motor skills can respond well to intensive therapeutic interventions delivered via occupational and physical therapy services. There is, however, a need to explore alternative approaches to delivering interventions outside traditional referral‐based clinic settings because limited resources mean such health services often struggle to meet demand. This review sets out to systematically assess the evidence for and against school‐based interventions targeted at improving the motor skills of children aged between 3‐12 years old. Method Five electronic databases were searched systematically (AMED, CINAHL, Cochrane, Medline & PsycINFO) for peer‐reviewed articles published between January 2012 and July 2018. Studies were eligible if they implemented a school‐based motor skill intervention with a randomised or case‐controlled trial design that objectively measured motor skills as an outcome, which were not specific to an athletic or sporting skill. Participants had to be aged between 3‐12 years old and free from neurological disorders known to affect muscle function. Risk of bias was assessed using the Cochrane risk of bias tool. Results Twenty‐three studies met the inclusion criteria. These studies encompassed interventions targeted at training: fundamental movement skills; handwriting; fine; and global motor skills. The majority of these studies reported beneficial impact on motor function specifically, but some interventions also assessed subsequent impacts on activity and participation (but not wellbeing). A number of the studies had methodological shortcomings that means these results need to be interpreted with caution. Conclusions Schools appear to be an effective setting for motor skill interventions, but the extent of benefit likely depends on the type of intervention. Moreover, confirmation is needed as to whether benefits extend beyond motor function into everyday activities, participation and wellbeing. Future research should include follow‐up measures to assess the longer‐term efficacy of school‐based interventions

    The reliability of two visual motor integration tests used with children

    Full text link
    Occupational therapists often assess the visual motor integration (VMI) skills of children and young people. It is important that therapists use tools with strong psychometric properties. This study aims to examine the reliability of 2 VMI tests. Ninety-two children between the ages of 5 and 17 years (response rate of 31%) completed 2 VMI tests: the Developmental Test of Visual Motor Integration (DTVMI) and the Full Range Test of Visual Motor Integration (FRTVMI). Cronbach\u27s alpha coefficient was used to examine the internal consistency of the 2 VMI tests whereas Spearman\u27s rho correlation was used to evaluate the test&ndash;retest reliability, intrarater reliability, and interrater reliability of the 2 VMI tests. The Cronbach\u27s alpha coefficient for the DTVMI was .82 and .72 for the FRTVMI. The test&ndash;retest reliability coefficient was .73 (p = .000) for the DTVMI and .49 (p = .05) for the FRTVMI. The interrater correlation was significant for both the DTVMI at .94 (p = .000) and FRTVMI at .68 (p = .001). The DTVMI intrarater reliability correlation result was .90 (p = .000) and the FRTVMI at .85 (p = .000). Overall, the DTVMI exhibited a higher level of reliability than the FRTVMI. Both VMI tests appear to exhibit reasonable levels of reliability and are recommended for use with children and young people.<br /

    Beyond knowing nature: Contact, emotion, compassion, meaning, and beauty are pathways to nature connection

    Get PDF
    Feeling connected to nature has been shown to be beneficial to wellbeing and pro-environmental behaviour. General nature contact and knowledge based activities are often used in an attempt to engage people with nature. However the specific routes to nature connectedness have not been examined systematically. Two online surveys (total n = 321) of engagement with, and value of, nature activities structured around the nine values of the Biophila Hypothesis were conducted. Contact, emotion, meaning, and compassion, with the latter mediated by engagement with natural beauty, were predictors of connection with nature, yet knowledge based activities were not. In a third study (n = 72), a walking intervention with activities operationalising the identified predictors, was found to significantly increase connection to nature when compared to walking in nature alone or walking in and engaging with the built environment. The findings indicate that contact, emotion, meaning, compassion, and beauty are pathways for improving nature connectedness. The pathways also provide alternative values and frames to the traditional knowledge and identification routes often used by organisations when engaging the public with nature.N/

    Intergenerational Communication – an interdisciplinary mapping review of research between 1996 and 2017

    Get PDF
    Concerns have been raised regarding the limited opportunities for intergenerational communication both outside and within the family. This “mapping review” draws together empirical literature in the topic published since 1996. Three hundred and twenty-four published studies met inclusion criteria, based on abstract review. The contents of each study were subjected to thematic analysis and nine broad themes emerged. These were (1) Dynamics of relationships, (2) Health & Well-being, (3) Learning & Literacy, (4) Attitudes, (5) Culture, (6) Digital, (7) Space, (8) Professional Development, and (9) Gender & Sexual Orientation. Studies commonly intersected disciplinary research areas. There was a marked rise across three key academic journals since 2007. An emergent finding was that a third of the studies relate to programs addressing intergenerational interventions, but many of these were primarily descriptive and failed to specify a primary outcome. Review implications and future research directions are discussed

    The Role of Early Life Experience and Species Differences in Alcohol Intake in Microtine Rodents

    Get PDF
    Social relationships have important effects on alcohol drinking. There are conflicting reports, however, about whether early-life family structure plays an important role in moderating alcohol use in humans. We have previously modeled social facilitation of alcohol drinking in peers in socially monogamous prairie voles. We have also modeled the effects of family structure on the development of adult social and emotional behaviors. Here we assessed whether alcohol intake would differ in prairie voles reared by both parents compared to those reared by a single mother. We also assessed whether meadow voles, a closely related species that do not form lasting reproductive partnerships, would differ in alcohol drinking or in the effect of social influence on drinking. Prairie voles were reared either bi-parentally (BP) or by a single mother (SM). BP- and SM-reared adult prairie voles and BP-reared adult meadow voles were given limited access to a choice between alcohol (10%) and water over four days and assessed for drinking behavior in social and non-social drinking environments. While alcohol preference was not different between species, meadow voles drank significantly lower doses than prairie voles. Meadow voles also had significantly higher blood ethanol concentrations than prairie voles after receiving the same dose, suggesting differences in ethanol metabolism. Both species, regardless of rearing condition, consumed more alcohol in the social drinking condition than the non-social condition. Early life family structure did not significantly affect any measure. Greater drinking in the social condition indicates that alcohol intake is influenced similarly in both species by the presence of a peer. While the ability of prairie voles to model humans may be limited, the lack of differences in alcohol drinking in BP- and SM-reared prairie voles lends biological support to human studies demonstrating no effect of single-parenting on alcohol abuse

    Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-tidal-volume mechanical ventilation and hyperoxia used in patients with acute lung injury (ALI) can induce the release of cytokines, including high-mobility group box-1 (HMGB1), oxygen radicals, neutrophil infiltration, and the disruption of epithelial and endothelial barriers. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between high tidal volume and hyperoxia are unclear. We hypothesized that subcutaneous injections of enoxaparin would decrease the effects of hyperoxia on high-tidal-volume ventilation-induced HMGB1 production and neutrophil infiltration via the serine/threonine kinase/protein kinase B (Akt) pathway.</p> <p>Methods</p> <p>Male C57BL/6, either wild type or Akt<sup>+/-</sup>, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air or hyperoxia for 2 to 8 hours with or without 4 mg/kg enoxaparin administration. Nonventilated mice served as a control group. Evan blue dye, lung wet-to-dry weight ratio, free radicals, myeloperoxidase, Western blot of Akt, and gene expression of HMGB1 were measured. The expression of HMGB1 was studied by immunohistochemistry.</p> <p>Results</p> <p>High-tidal-volume ventilation using hyperoxia induced microvascular permeability, Akt activation, HMGB1 mRNA expression, neutrophil infiltration, oxygen radicals, HMGB1 production, and positive staining of Akt in bronchial epithelium. Hyperoxia-induced augmentation of ventilator-induced lung injury was attenuated with Akt deficient mice and pharmacological inhibition of Akt activity by enoxaparin.</p> <p>Conclusion</p> <p>These data suggest that enoxaparin attenuates hyperoxia-augmented high-tidal-volume ventilation-induced neutrophil influx and HMGB1 production through inhibition of the Akt pathway. Understanding the protective mechanism of enoxaparin related with the reduction of HMGB1 may help further knowledge of the effects of mechanical forces in the lung and development of possible therapeutic strategies involved in acute lung injury.</p
    corecore